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Path integral representations for the quantum microcanonical ensemble are presented. In the quantum mi-
crocanonical ensemble, two operators are of primary interest. pitsf(E—H) corresponds to the microca-
nonical density matrix and can be used to calculate expectation values. SBce®{E—H) can give the
number of states with energf,<E. We consider position matrix elements of both of these operators
Q(x,x",E)=(x'| S(E—H)|x) and O(x,x',E)=(x'|6(E—H)|x). A path integral formalism leads to exact
integral representations fét(x,x’,E) and® (x,x’,E). We present both phase space and configuration space
forms. For simple systems, such as the free particle and harmonic oscillator, exact solutions are possible. For
more complicated systems, expansion schemes or numerical evaluations are required. A perturbative calcula-
tion and numerical integration results are presented for the quantum anharmonic oscillator.

PACS numbds): 05.30.Ch, 31.15.Kb

. INTRODUCTION tonian operator of the system. The first operator 5(E

_ . L —H) corresponds to the microcanonical density matrix. In
The Feynman path integral, which was originally devel-paicylar, we are interested in its position matrix elements
oped for the quantum  propagator K(x,x',T)
=(x'|e M7 |x), has found many applications in statistical Q(x,x",E)=(x'| S(E—H)|x). )
mechanic$1,2]. In the quantum canonical ensemble, for ex-
ample, the central quantity of interest is the thermal densityNotice that this quantity is the inverse Laplace transform of

matrix p.=e . Since its position matrix elements the Euclidian propagatofx’|e”"'T|x). Knowledge of the

(x'|e H|x) are isomorphic to the quantum prOpagatorSZ;:z;y matrix allows calculation for statistical expectation

K(x,x",T), path integral expressions could also be devel-
oped for it as well. Monte Carlo evaluation of this path in-
tegral has formed the basis of many quantum calculations,
especially related to condensed matter systems at low tenjf the trace is taken in the position basis, then
peratureg 3].

For the quantum microcanonical ensemble, no such path
integral expressions have been available. This fact, in part,
has hampered application of the microcanonical ensemble to
realistic systems. Such calculations could be of great interesthere(x’| S(E—H)|x) is preciselyQ(x,x’,E).
for several reasons. First, since many systems at low tem- We can examine the structure 6¥(x,x’,E) further by
peratures are effectively isolated, a microcanonical approacfyserting a complete set of energy eigenstades,= E,, i, .
may be more appropriate. Bose-Einstein condensates, for exhe following spectral form is obtained:
ample, confined in a trap at very low temperatures may fall
into this category. Secondly, even though the ensembles are , ,
equivalent in the thermodynamic limit, differences are ex- Q(x,x ’E):; g (X") Pn(X) S(E—Ep). 4
pected for small, finite humbers of particles. These differ-
ences might be measurable experimentally, for example, iBy taking the trace of}(x,x’,E), we find
clusters. Thirdly, first order phase transitions are accompa-
nied by a latent heat which gives a discontinuity in the en-

(OY=TrOp/Trp. 2)

Tr(A);)=Jdxd%(x|©|x’)(x’|5(E—I:|)|x), ©))

ergy at the transition. In this situation, it may be more useful w(E)= ; o(E-Ey) )
to have the energ¥ as a control parameter rather than the
temperatureT [4]. which corresponds to the density of states.

_ In this paper, we de\_/elop exact path integral representa- The second operator we consideRis: 0(E—I:|). Again,
tions for the quantum microcanonical ensemble. We considefe are interested in position matrix elements

two operatorsp=8(E—H) andN=6(E—H) whereE is a
parameter with dimension of energy ahtlis the Hamil- O (x,x",E)=(x'| 6(E—H)|x). (6)
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Notice that this quantity is simply related &(x,x’,E) since  The matrix elemen{x’|e”"?"|x) inside the integral has the
dO(E)/dE=Q(E). Taking the trace 0B (x,x’,E), we find  form of a propagator witre=t/%. We can develop a path
integral expression for it in the usual w4¢,2]. First, we
O(E)=> 6(E-E,) (7)  write e”'?"= (e "?")N*1 wheree=1/(N+1) and is dimen-
n sionless. Notice in the usual derivatians T/(N+ 1) where
T is the time. HerezA plays the role of the time interval
which gives the number of states with enefgy<E. which we divide intoN segments of length/i e. We insertN

This paper is organized as follows. As a preliminary cal-sets of complete position states between each product to give
culation, Q(x,x’,E) is evaluated for the free particle. This

can be done directly without recourse to path integrals. This N N+ 1

will provide a first check for the later path integral expres- Q(x.x'.E :f dzd?E fw dx x.|e~izeH]x
sions. Next, the path integral fd2(x,x’,E) is developed. (xx",E) nﬂl - “kll (xd Xie-2),
Both phase space and configuration forms are presented. (13
Similar expressions foP (x,x’,E) follow immediately by

doing an energy i_ntegral. For the_case of the free particle angjhere the fixed end point(x’) are now labeled=x, and
the harmonic oscillator, the path integrals fo(x,x’,E) are X' =Xy 1. For a single particléd = T+ whereT and¥ are

evaluated exactly. As W.'th the Feynman path mtegral,.thes e kinetic and potential energy operators. The exponential
are the only exact solutions possible. For more complicate -

—1 H .

potentials, the integrals must be evaluated approximately, ef (A:an.be decomposed for smallising the Trotter for-
ther through an expansion or numerically. A perturbative calmula e =limy_..(e""e""M)N. If T=p?2m, and complete
culation for the anharmonic oscillator is performed, recoversets of momentum states are inserted, then
ing known results. Numerical evaluations are also presented.
In this paper, only single particle quantum systems are con- o d _ _

. f . . —izeH P« (I117)pr(Xk—Xk—1) a—1Z€H(X )
sidered, but generalization of these ideas to many-body sys- (Xy/e X 1)= me TP kePi),
tems and quantum fields is immediate. (14)

Il. FREE PARTICLE KERNELS where H(xk,pk)=p§/2m+V(xk) is the classical Hamil-

Before introducing path integrals, we consider the freetonian. We find forN time slices

particle directly. In this case,
N N+1

~ oo . o0 o0 d
Q(x,x",E)=(x"| 8(E— p?2m)|x), (8) Q(x,x’,E)=f dze? ][ f dx, Pm
—o0 n=1 — m=1 — 27Tﬁ
whereH = p?/2m. Momentum eigenstates can be inserted Xei/hZE;rllpk(xk—xk,l)e—iZeZE‘IllH(Xk,pk),
=odp (15
’ — p/f(x"—x) _n2
Q(x,x",E) f_w 27The S(E—p2m) (9
where the summation evaluates the Hamiltonéfx, ,p,)
and the integral evaluated to give along a path with fixed end points,k’) and periodz/i. The
zintegration can be performed, and again yields a delta func-
Ox ) m {2 m( e tion:
X, X", E)= cog—\/= (X' —x .
2m*h?E hiV2 N N+1 d
(19 axx E)=11 J dx, [ J ~Pm
. . ) =1 Jow  m=1 J-w 27h
This is the exact result for the free particle. The free particle
expression foi® (x,x’,E) can be found immediately by in- Xei/ﬁEEifpk(xk*Xk-l)
tegrating with respect t&. The result is -
X8| E—e >, H(X¢.pW) | (16)
O (X' E)= — 'r{zx/m( x|, (1) =
X, X" \E)= ————sin —-\/ = (X' —X .
m(x'=x) [h V2
This is the phase space path integral fofx,x’,E). It be-
IIl. PATH INTEGRAL EXPRESSIONS comes exact in the limit all— . Sincee=1/(N+1), in-
_ _ _ stead of the usuad=T/(N+1), we have effectively set
The path integral expression féX(x,x’,E) for an arbi- =1. Thus, all paths have unit period. A path integral for

trary potential is now derived. We begin by using the integralo (E), the density of states, is immediate by restricting to
representation for the delta function in Hg) closed paths<=x’=x and integrating ovex. This corre-

. sponds to taking the trace 6¥(x,x’,E)

Q(x,x’,E)zJ dZéEZ<X/|e—izI:I|X>‘ (12) . The momentum integrals can be performed exactly and
e give



PRE 61 PATH INTEGRALS FOR THE QUANTUM . .. 63

o N whereAg=(m/2¢) =" 1 (x,—x_1)? is the free particle ac-
Q(x,x",E)= H tion. Ag can be diagonalized using Fourier analysis. The re-
2mh2e n=1 sulting integrals can then be performed iteratively.
We follow a treatment which is standard for the Feynman
dx, [E—V]"? path integral as outlined in Kleinef2]. Each path is first
decomposed
—=\2mh2elm [Ag 1h2]"?

X(1) =X(t) + ox(1) (21)

6(E—-V), (17 into a classical patlii.e., x. obeys the classical equation of
motion plus a fluctuation piecéx(t) aboutx.(t). The ac-
tion breaks up into

A
xJ,| 2\| —(E-V)
ﬁ2

wherev=(N—1)/2, J, is a Bessel function of order, and

A(E—V) is a theta function. N+1
y Ar=Aat 5 2, (0% i), (22)

=—62 — Xk— 1)

¢ whereA, = (m/2)(x’ —x)? is the classical action for a path

is the free action antf= e N“V(xk) is the classical poten- of unit period. The path fluctuations can be Fourier analyzed

tial evaluated along a given path fisrtime slices. Since is ~ USing the series
dimensionlessAr andV do not have their customary units of
action.V has units of energy an8lz has units of A T]. SXp(t) = E
This is the primary result of this paper. Equati@iy) is Kk
the configuration space path integral fo¢x,x’,E). As with
the phase space form, it becomes exadtias<. Notice that  where thex, are the Fourier components. The result for the
since Q(x,x’,E) =(x'| (E—H)|x) is the inverse Laplace fluctuation action
transform of the Euclidian propagator, the path integral ex-
pressions above could have been obtained from an inverse
Laplace transform of the Euclidian Feynman path integral.
A path integral expression f@ (x,x’,E) can be obtained
immediately by integratind)(x,x’,E) with respect to the where
energy parametef. The configuration space result is

N - 22 mm

[ m m COYNTIL
O(x,x",E)= H
2h2e n=1

The Fourier transformed action is returned to the path inte-
dx, [E—V]+DR2 gral, thex, variables decouple, and the integrations can be

done iteratively. The result
—=\2mh2elm [Ag /£ D2

Q(x,x",E) m COS{2 m(x’ X)2E
/A XE) = A cos S M —
XJ(,,+1)(2 h_Z(E_V)) O(E—V). 27°E h V2

agrees with the free particle solution obtained previously
(18) (10). Notice that the path integral was evaluated for fiNte
but gave the continuum result. In fact, tNe=1 path integral
IV. FREE PARTICLE PATH INTEGRAL also gives the continuurN=c result. This trivialN depen-
dence is unique to the free particle as with the Feynman case.

sm(mqrt )Xm s

N+1

Aﬂ:EE; Qmﬁmxﬁq, (23)

(24)

As a first example, the path integral fé¥(x,x',E) is
evaluated for the free particle. For the remainder of this pa-
per, the following shorthand will be used for the path inte- V. HARMONIC OSCILLATOR

gration measure Next, the harmonic oscillator is considered. In this case,

V(x) = smwaxi wherem is the mass and, is the charac-

N
_ m * dx, teristic frequency. For simplicity, only the trae€s) is con-
[dx,]= [Ml]| —— @ Jp5,
27h?e n=1J—=\[27h2e/m sldere

We will also suppress factors df. The free particle ¥ w(E):J“ d?ﬂ(x X By (25)
=0) expression is . KB Ix=xr=xs
vl2 —
Q(x,x’,E)=J [dxn]E—V/ZJV(Z\/AF_E), (20) where the end points have been identifieelx’ =X, and the
Ag X integration implements the trace. To evaluate this quantity,
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we insert the path integral expression fofx,x’,E) in Eq. T (=) (E— V)
(13). An integral representation for the Bessel function is  Q(x,x’,E)= >, f[dxn](vim)k\/A—”*k
F

— |
also used o K

XJ,- [ 2VAR(E—V)JO(E-Vo). (32

J(2z) 1 fexie o
—_— = det~ v tet=# 7, (26)
z’ 2l J i If Vi is small, we can keep only the leading terms. Note that
. . _ . ) thek=0 term gives the harmonic oscillator.
After rescaling and interchanging integrations«{E), we We now calculate the first order correction dgE) for
obtain the anharmonic oscillator. The integral to evaluate is
1 C+iocd Et d_ d [A +t2V]
= — ~LAF —
*(B)= o f e f Xf [dX,Je | w(”=—f de [dX,]Vin(E—Vg) "~
(27)
The path integration has the form of the trace of a Euclidian X‘]V‘l[z VAr(E~ Vo] H(E— Vo), (33)
propagator. For the harmonic oscillator, the result is well Ap(E—Vy)" 1t

known Z=1/2 sinf(wy/2)t] [2]. Thet integration is equiva-
lent to an inverse Laplace transform. Assembling these regnere again the end points have been identified and inte-

sults and doing the inversion yields grated. Using the integral for the Bessel function, and sim-

- lifying, we obtain
v _[2(N+1)E plifying
o(B)= 2 | —o—

n=

howg |’ (28) 1 (c+i= g
"’mzz_wij " greFir1d
wherev=(2n+1)(N+1). This is the exact density of states o

for the harmonic oscillator for finitdN. As N—o, w(E) o .
goes over to the continuum form X f, dxx4J [dx,]e” (1MWAF—tVo, (34)
- 1 _ : :
w(E)= E S\E—| n+ 5| @o (290  The quantity under the path integral again has the form of a
n=0 propagator for a Euclidian harmonic oscillator. Its result is
well known

with the harmonic oscillator spectruly,= (n+ 3) wy.
m(x)ot ) 12

VI. ANHARMONIC OSCILLATOR: dx.Je~ WA-tvo_| 9"
f[ n] 27 sinh( wqt)

PERTURBATIVE SERIES

_ i i 2
For more complicated potentials, the integrals must be X el =Moo sinh(eeD]2 sintfl(wg/2)x°,

evaluated either perturbatively or numerically. We generate a (35)
perturbation series fd(x,x’,E), and apply it to the anhar-

. . ; : i 2,2 4
monic oscillator with potentialV(x,) =zmwoXi+9/4%  |nserting this expression, performing the integral, and ex-

whereg is a coupling constant. The configuration space patthanding the hyperbolic functions in terms of exponentials
integral (13) can be rewritten as gives

1 ct+ioc
Q(X,X/,E): mj‘c_i dteEtt—V—lf [an]e_(lh)AF_tV,

1 ct+ic *
w(1)=—ﬁf dtef'Y) [1+2n(n+1)]
(30) ) c—i n=0

) ] —(n+1/2)wgt
where the integral representation fg)(z) has been used, the X pte ° (36)

t variable rescaled. The potential can be split Vo+ Vi 5 ) ) ) )
whereV, is the harmonic potential and;,, contains higher ~Where =23/169(1/mw,). We combine this quantity with

order terms. The exponential is expanded the zeroth order result and perform théntegration which
amounts to an inverse Laplace transform to get our final
1 fetie o result
Q(x,x ’E)_ﬁfc—im dte~'t i}
2 (kK g o(E)=2, SE-B), (37)

><J [dxn]e*(1")’*F*“’0k§=:0 — nt

(31) where E=(n+3)wo+[1+2n(n+1)]8 for n=0,12...,
are the perturbative eigenvalues for the anharmonic oscilla-
and the Bessel function reconstituted to give the followingtor. This expression agrees identically with first order results
perturbative series: obtained through Rayleigh-Ritz perturbation they.
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VII. ANHARMONIC OSCILLATOR: 14 . . . . . . . . .
NUMERICAL INTEGRATION

12k

To obtain nonperturbative results, numerical evaluations .
will generally be needed. To illustrate this and the generalityEJ/
of the exact integral expression, direct numerical integration
of the integrals were performed for a small number of time %08_
slicesN=2. Notice that changing the form of the potential bl '
means only trivial adjustments to the numerical scheme. Soal

We consider again the anharmonic oscillator, but for non- <.”
perturbative values of the coupling=1.0. The results for G
N=2 are shown in Fig. 1. Because only a small number of &>

time slices are used, only a crude estimate of the eigenvalu®

spectrum is obtained. The first peak occursE§f 2~0.7. ozp

The current estimate for the ground state energy s 0.6

[6]. Recall that in the continuum limiip(E) is a series of o ] 2 s s . 7 s s 10
delta function spikes. For smal, the peaks are rounded and E

shifted. The discrepancy between firand the continuum FIG. 1. Numerical evaluation of the density of stai(E) path

Is due fo using the Trotter formula for finit integral for the anharmonic oscillator fo&i=2 (two-time sliceg

In this paper, we have presented path integral remesemghd parameter valugs= w,=g=1.0. Each peak corresponds to an

tions for matrix elgments of .the number operator and denS|t)énergy eigenvalue.
operator for the microcanonical ensemble. Previous work has
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