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Path integrals for the quantum microcanonical ensemble
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~Received 28 June 1999!

Path integral representations for the quantum microcanonical ensemble are presented. In the quantum mi-
crocanonical ensemble, two operators are of primary interest. First,r̂5d(E2Ĥ) corresponds to the microca-
nonical density matrix and can be used to calculate expectation values. Second,N̂5Q(E2Ĥ) can give the
number of states with energyEn,E. We consider position matrix elements of both of these operators
V(x,x8,E)5^x8ud(E2Ĥ)ux& and Q(x,x8,E)5^x8uu(E2Ĥ)ux&. A path integral formalism leads to exact
integral representations forV(x,x8,E) andQ(x,x8,E). We present both phase space and configuration space
forms. For simple systems, such as the free particle and harmonic oscillator, exact solutions are possible. For
more complicated systems, expansion schemes or numerical evaluations are required. A perturbative calcula-
tion and numerical integration results are presented for the quantum anharmonic oscillator.

PACS number~s!: 05.30.Ch, 31.15.Kb
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I. INTRODUCTION

The Feynman path integral, which was originally dev
oped for the quantum propagator K(x,x8,T)

5^x8ue2 iĤ T/\ux&, has found many applications in statistic
mechanics@1,2#. In the quantum canonical ensemble, for e
ample, the central quantity of interest is the thermal den

matrix r̂c5e2bĤ. Since its position matrix element

^x8ue2bĤux& are isomorphic to the quantum propaga
K(x,x8,T), path integral expressions could also be dev
oped for it as well. Monte Carlo evaluation of this path i
tegral has formed the basis of many quantum calculatio
especially related to condensed matter systems at low
peratures@3#.

For the quantum microcanonical ensemble, no such p
integral expressions have been available. This fact, in p
has hampered application of the microcanonical ensemb
realistic systems. Such calculations could be of great inte
for several reasons. First, since many systems at low t
peratures are effectively isolated, a microcanonical appro
may be more appropriate. Bose-Einstein condensates, fo
ample, confined in a trap at very low temperatures may
into this category. Secondly, even though the ensembles
equivalent in the thermodynamic limit, differences are e
pected for small, finite numbers of particles. These diff
ences might be measurable experimentally, for example
clusters. Thirdly, first order phase transitions are accom
nied by a latent heat which gives a discontinuity in the e
ergy at the transition. In this situation, it may be more use
to have the energyE as a control parameter rather than t
temperatureT @4#.

In this paper, we develop exact path integral represe
tions for the quantum microcanonical ensemble. We cons
two operatorsr̂5d(E2Ĥ) and N̂5u(E2Ĥ) whereE is a
parameter with dimension of energy andĤ is the Hamil-
PRE 611063-651X/2000/61~1!/61~5!/$15.00
-

-
ty

r
l-

s,
m-

th
rt,
to
st
-

ch
x-
ll
re
-
-
in
a-
-
l

a-
er

tonian operator of the system. The first operatorr̂5d(E
2Ĥ) corresponds to the microcanonical density matrix.
particular, we are interested in its position matrix elemen

V~x,x8,E!5^x8ud~E2Ĥ !ux&. ~1!

Notice that this quantity is the inverse Laplace transform
the Euclidian propagator̂x8ue2ĤTux&. Knowledge of the
density matrix allows calculation for statistical expectati
values

^Ô&5Tr Ôr̂/Tr r̂. ~2!

If the trace is taken in the position basis, then

Tr Ôr̂5E dxdx8^xuÔux8&^x8ud~E2Ĥ !ux&, ~3!

where^x8ud(E2Ĥ)ux& is preciselyV(x,x8,E).
We can examine the structure ofV(x,x8,E) further by

inserting a complete set of energy eigenstatesĤcn5Encn .
The following spectral form is obtained:

V~x,x8,E!5(
n

cn* ~x8!cn~x!d~E2En!. ~4!

By taking the trace ofV(x,x8,E), we find

v~E!5(
n

d~E2En! ~5!

which corresponds to the density of states.
The second operator we consider isN̂5u(E2Ĥ). Again,

we are interested in position matrix elements

Q~x,x8,E!5^x8uu~E2Ĥ !ux&. ~6!
61 ©2000 The American Physical Society
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62 PRE 61JOHN W. LAWSON
Notice that this quantity is simply related toV(x,x8,E) since
dQ(E)/dE5V(E). Taking the trace ofQ(x,x8,E), we find

Q~E!5(
n

u~E2En! ~7!

which gives the number of states with energyEn,E.
This paper is organized as follows. As a preliminary c

culation, V(x,x8,E) is evaluated for the free particle. Th
can be done directly without recourse to path integrals. T
will provide a first check for the later path integral expre
sions. Next, the path integral forV(x,x8,E) is developed.
Both phase space and configuration forms are presen
Similar expressions forQ(x,x8,E) follow immediately by
doing an energy integral. For the case of the free particle
the harmonic oscillator, the path integrals forV(x,x8,E) are
evaluated exactly. As with the Feynman path integral, th
are the only exact solutions possible. For more complica
potentials, the integrals must be evaluated approximately
ther through an expansion or numerically. A perturbative c
culation for the anharmonic oscillator is performed, recov
ing known results. Numerical evaluations are also presen
In this paper, only single particle quantum systems are c
sidered, but generalization of these ideas to many-body
tems and quantum fields is immediate.

II. FREE PARTICLE KERNELS

Before introducing path integrals, we consider the fr
particle directly. In this case,

V~x,x8,E!5^x8ud~E2 p̂2/2m!ux&, ~8!

whereĤ5 p̂2/2m. Momentum eigenstates can be inserted

V~x,x8,E!5E
2`

` dp

2p\
eip/\(x82x)d~E2p2/2m! ~9!

and the integral evaluated to give

V~x,x8,E!5A m

2p2\2E
cosF 2

\
Am

2
~x82x!2EG .

~10!

This is the exact result for the free particle. The free parti
expression forQ(x,x8,E) can be found immediately by in
tegrating with respect toE. The result is

Q~x,x8,E!5
1

p~x82x!
sinF 2

\
Am

2
~x82x!2EG . ~11!

III. PATH INTEGRAL EXPRESSIONS

The path integral expression forV(x,x8,E) for an arbi-
trary potential is now derived. We begin by using the integ
representation for the delta function in Eq.~1!

V~x,x8,E!5E
2`

`

dzeiEz^x8ue2 izĤux&. ~12!
-

is
-
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d

e
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e
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The matrix element̂x8ue2 izĤux& inside the integral has the
form of a propagator withz5t/\. We can develop a path
integral expression for it in the usual way@1,2#. First, we
write e2 izĤ5(e2 izĤe)N11 wheree51/(N11) and is dimen-
sionless. Notice in the usual derivation,e5T/(N11) where
T is the time. Here,z\ plays the role of the time interva
which we divide intoN segments of lengthz\e. We insertN
sets of complete position states between each product to

V~x,x8,E!5E dzeizE)
n51

N E
2`

`

dxn )
k51

N11

^xkue2 izeĤuxk21&,

~13!

where the fixed end points (x,x8) are now labeledx5xo and
x85xN11. For a single particle,Ĥ5T̂1V̂ whereT̂ andV̂ are
the kinetic and potential energy operators. The exponen
e2 izeĤ can be decomposed for smalle using the Trotter for-
mula eĤ5 limN→`(eT̂/NeV̂/N)N. If T̂5 p̂2/2m, and complete
sets of momentum states are inserted, then

^xkue2 izeĤuxk21&5E dpk

2p\
e( i /\)pk(xk2xk21)e2 izeH(xk ,pk),

~14!

where H(xk ,pk)5pk
2/2m1V(xk) is the classical Hamil-

tonian. We find forN time slices

V~x,x8,E!5E
2`

`

dzeizE)
n51

N E
2`

`

dxn )
m51

N11 E
2`

` dpm

2p\

3ei /\(k51
N11pk(xk2xk21)e2 ize(k51

N11H(xk ,pk),

~15!

where the summation evaluates the HamiltonianH(xk ,pk)
along a path with fixed end points (x,x8) and periodz\. The
z integration can be performed, and again yields a delta fu
tion:

V~x,x8,E!5 )
n51

N E
2`

`

dxn )
m51

N11 E
2`

` dpm

2p\

3ei /\(k51
N11pk(xk2xk21)

3dS E2e (
k51

N11

H~xk ,pk!D . ~16!

This is the phase space path integral forV(x,x8,E). It be-
comes exact in the limit asN→`. Sincee51/(N11), in-
stead of the usuale5T/(N11), we have effectively setT
51. Thus, all paths have unit period. A path integral f
v(E), the density of states, is immediate by restricting
closed pathsx5x85 x̄ and integrating overx̄. This corre-
sponds to taking the trace ofV(x,x8,E)

The momentum integrals can be performed exactly a
give
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V~x,x8,E!5A m

2p\2e
)
n51

N

3E
2`

` dxn

A2p\2e/m

@E2V#n/2

@AF /\2#n/2

3JnS 2AAF

\2
~E2V!D u~E2V!, ~17!

wheren5(N21)/2, Jn is a Bessel function of ordern, and
u(E2V) is a theta function.

AF5
m

2
e (

k51

N11
~xk2xk21!2

e2

is the free action andV5e(k51
N11V(xk) is the classical poten

tial evaluated along a given path forN time slices. Sincee is
dimensionless,AF andV do not have their customary units o
action.V has units of energy andAF has units of@\T#.

This is the primary result of this paper. Equation~17! is
the configuration space path integral forV(x,x8,E). As with
the phase space form, it becomes exact asN→`. Notice that
since V(x,x8,E)5^x8ud(E2Ĥ)ux& is the inverse Laplace
transform of the Euclidian propagator, the path integral
pressions above could have been obtained from an inv
Laplace transform of the Euclidian Feynman path integra

A path integral expression forQ(x,x8,E) can be obtained
immediately by integratingV(x,x8,E) with respect to the
energy parameterE. The configuration space result is

Q~x,x8,E!5A m

2p\2e
)
n51

N

3E
2`

` dxn

A2p\2e/m

@E2V# (n11)/2

@AF /\2# (n11)/2

3J(n11)S 2AAF

\2
~E2V!D u~E2V!.

~18!

IV. FREE PARTICLE PATH INTEGRAL

As a first example, the path integral forV(x,x8,E) is
evaluated for the free particle. For the remainder of this
per, the following shorthand will be used for the path in
gration measure

E @dxn#5A m

2p\2e
)
n51

N

E
2`

` dxn

A2p\2e/m
. ~19!

We will also suppress factors of\. The free particle (V
50) expression is

V~x,x8,E!5E @dxn#
En/2

AF
n/2

Jn~2AAFE!, ~20!
-
se

-
-

whereAF5(m/2e)(1
N11(xk2xk21)2 is the free particle ac-

tion. AF can be diagonalized using Fourier analysis. The
sulting integrals can then be performed iteratively.

We follow a treatment which is standard for the Feynm
path integral as outlined in Kleinert@2#. Each path is first
decomposed

x~ t !5xc~ t !1dx~ t ! ~21!

into a classical path~i.e., xc obeys the classical equation o
motion! plus a fluctuation piecedx(t) aboutxc(t). The ac-
tion breaks up into

AF5Acl1
m

2e (
k51

N11

~dxk2dxk21!2, ~22!

whereAcl5(m/2)(x82x)2 is the classical action for a pat
of unit period. The path fluctuations can be Fourier analyz
using the series

dxk~ tk!5 (
m51

N A 2

N11
sin~mptk!xm ,

where thexm are the Fourier components. The result for t
fluctuation action

Afl5
m

2
e (

1

N11

VmV̄mxm
2 , ~23!

where

VmV̄m5
1

e2 F222 cosS pm

N11D G .
The Fourier transformed action is returned to the path in
gral, thexm variables decouple, and the integrations can
done iteratively. The result

V~x,x8,E!5A m

2p2E
cosF 2

\
Am

2
~x82x!2EG ~24!

agrees with the free particle solution obtained previou
~10!. Notice that the path integral was evaluated for finiteN,
but gave the continuum result. In fact, theN51 path integral
also gives the continuumN5` result. This trivialN depen-
dence is unique to the free particle as with the Feynman c

V. HARMONIC OSCILLATOR

Next, the harmonic oscillator is considered. In this ca
V(xk)5 1

2 mv0
2xk

2 wherem is the mass andv0 is the charac-
teristic frequency. For simplicity, only the tracev(s) is con-
sidered

v~E!5E
2`

`

dx̄V~x,x8,E!ux5x85 x̄ , ~25!

where the end points have been identifiedx5x85 x̄, and the
x̄ integration implements the trace. To evaluate this quan
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64 PRE 61JOHN W. LAWSON
we insert the path integral expression forV(x,x8,E) in Eq.
~13!. An integral representation for the Bessel function
also used

Jn~2z!

zn
5

1

2p i Ec2 i`

c1 i`

dtt2n21et2z2/t. ~26!

After rescaling and interchanging integrations inv(E), we
obtain

v~E!5
1

2p i Ec2 i`

c1 i`

dteEtE dx̄E @dxn#e2[AF1t2V] .

~27!

The path integration has the form of the trace of a Euclid
propagator. For the harmonic oscillator, the result is w
known Z51/2 sinh@(v0/2)t# @2#. The t integration is equiva-
lent to an inverse Laplace transform. Assembling these
sults and doing the inversion yields

v~E!5 (
n50

`
n

E
JnS 2~N11!E

\vO
D , ~28!

wheren5(2n11)(N11). This is the exact density of state
for the harmonic oscillator for finiteN. As N→`, v(E)
goes over to the continuum form

v~E!5 (
n50

`

dXE2S n1
1

2Dv0C ~29!

with the harmonic oscillator spectrumEn5(n1 1
2 )v0.

VI. ANHARMONIC OSCILLATOR:
PERTURBATIVE SERIES

For more complicated potentials, the integrals must
evaluated either perturbatively or numerically. We genera
perturbation series forV(x,x8,E), and apply it to the anhar
monic oscillator with potentialV(xk)5 1

2 mv0
2xk

21g/4xk
4

whereg is a coupling constant. The configuration space p
integral ~13! can be rewritten as

V~x,x8,E!5
1

2p i Ec2 i`

c1 i`

dteEtt2n21E @dxn#e2(1/t)AF2tV,

~30!

where the integral representation forJn(z) has been used, th
t variable rescaled. The potential can be splitV5V01Vint
whereV0 is the harmonic potential andVint contains higher
order terms. The exponential is expanded

V~x,x8,E!5
1

2p i Ec2 i`

c1 i`

dteEtt2n21

3E @dxn#e2(1/t)AF2tV0(
k50

`
~2 !kVint

k tk

k!

~31!

and the Bessel function reconstituted to give the follow
perturbative series:
n
ll

e-

e
a

h

V~x,x8,E!5 (
k50

`
~2 !k

k! E @dxn#~Vint!
kA~E2V0!

AF

n2k

3Jn2k@2AAF~E2V0!#u~E2V0!. ~32!

If Vint is small, we can keep only the leading terms. Note t
the k50 term gives the harmonic oscillator.

We now calculate the first order correction tov(E) for
the anharmonic oscillator. The integral to evaluate is

v (1)52E dx̄E @dxn#Vint~E2V0!n21

3
Jn21@2AAF~E2V0#

AAF~E2V0!n21
u~E2V0!, ~33!

where again the end points have been identified and i
grated. Using the integral for the Bessel function, and s
plifying, we obtain

v (1)5
1

2p i Ec2 i`

c1 i`

dteEtt2n21
g

4

3E
2`

`

dx̄x̄4E @dxn#e2(1/t)AF2tV0. ~34!

The quantity under the path integral again has the form o
propagator for a Euclidian harmonic oscillator. Its result
well known

E @dxn#e2(1/t)AF2tV05S mv0t

2p sinh~v0t ! D
1/2

3e[ 2mv0 /sinh(v0t)]2 sinh2[(v0/2)t] x̄2
.

~35!

Inserting this expression, performing the integral, and
panding the hyperbolic functions in terms of exponenti
gives

v (1)52
1

2p i Ec2 i`

c1 i`

dteEt(
n50

`

@112n~n11!#

3bte2(n11/2)v0t ~36!

where b53/16g(1/mv0)2. We combine this quantity with
the zeroth order result and perform thet integration which
amounts to an inverse Laplace transform to get our fi
result

v~E!5 (
n50

`

d~E2Ẽ!, ~37!

where Ẽ5(n1 1
2 )v01@112n(n11)#b for n50,1,2, . . . ,

are the perturbative eigenvalues for the anharmonic osc
tor. This expression agrees identically with first order resu
obtained through Rayleigh-Ritz perturbation theory@5#.
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VII. ANHARMONIC OSCILLATOR:
NUMERICAL INTEGRATION

To obtain nonperturbative results, numerical evaluatio
will generally be needed. To illustrate this and the genera
of the exact integral expression, direct numerical integrat
of the integrals were performed for a small number of tim
slicesN52. Notice that changing the form of the potenti
means only trivial adjustments to the numerical scheme.

We consider again the anharmonic oscillator, but for n
perturbative values of the couplingg51.0. The results for
N52 are shown in Fig. 1. Because only a small number
time slices are used, only a crude estimate of the eigenv
spectrum is obtained. The first peak occurs atEo

N52'0.7.
The current estimate for the ground state energy isEo'0.6
@6#. Recall that in the continuum limit,v(E) is a series of
delta function spikes. For smallN, the peaks are rounded an
shifted. The discrepancy between finiteN and the continuum
is due to using the Trotter formula for finiteN.

In this paper, we have presented path integral represe
tions for matrix elements of the number operator and den
operator for the microcanonical ensemble. Previous work
focused mainly on path integral expressions for the den
of statesv(E). Early work relied heavily on semiclassica
expansions of the Feynman path integral@7#. More recently,
Doll and Freeman have developed a Fourier path integra
v(E) using a Hubbard-Stratonovich transformation@8#. This
path integral requires integration over a set of auxiliary va
ables as well as the Fourier path variables. Fixed energy
Gaussian ensembles have also been discussed in the co
of lattice gauge theory@9#.
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FIG. 1. Numerical evaluation of the density of statesv(E) path
integral for the anharmonic oscillator forN52 ~two-time slices!
and parameter valuesm5v05g51.0. Each peak corresponds to a
energy eigenvalue.
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